My colleague Tom Levenson took a moment to speak with physicist, and current Dean of the School of Sciences at MIT, Marc Kastner about the effects of the sequester on research:
![]()
![]()
![]()
For MIT itself the effects, Kastner says, will hurt -- a lot. The hit to the annual research budget will be about $40 million -- falling most heavily on the School of Science, which gets 95% of its research budget from the federal government. The effects won't be felt equally across the board. If you run a big lab then you have some room to manouver, Kastner acknowledges. "Is ever Eric Lander going to slow down? He'll find a way." But, he says, "The rich survive and the poor get devastated. The real question is the next generation. "That is: the sequester wreaks its havoc by striking hardest at particular points in the life cycle of a university researcher. New tenure-line faculty are actually somewhat insulated from the very worst of the pressure. "Every agency has set aside money for young investigators," he says,"some from private foundations, and a lot from the feds." Cuts in budget strike those dependent on other people's grants -- graduate students, post docs and soft-money research scientists -- but a new faculty hire has somewhat better prospects than most for the first few years. The rubber hits the road, though, at tenure. MIT, like other leading research universities, generally tenures faculty at around the seven year mark.Researchers achieve tenure on the basis of strong performance in those first years and then after promotion are expected to advance their program through what should be the heart of their productive lives. The tricky part is that it is already enormously difficult to do so. Once tenured, the researcher competes for grants against the entire population, Nobel laureates, National Academicians and all. There's a reason that the average age for winning your first R0-1 grant is 42 -- that's up by more than five years since 1980. Add the sequester's cut on top of that existing semi (or more than)-crisis, and you have a circumstance where early-mid career scientists could become even more at risk to career-blasting loss of research funding.
Tom then zooms out to look at the whole motive for investing in science in the first place:
But to cut through to the hard cash at the core of this whole crisis, the simple truth is that paying for basic research is a bet a society makes on its future. And it turns out that it is one of the safest wagers around. In the 2007 report linked above, the CBO writes, in predictably dry language, "Federal spending in support of basic research over the years has, on average, had a significantly positive return, according to the best available research." (p. 15) Or, to put it a more gaudily, it's estimated that the Human Genome Project delivered a return on investment of 141:1 -- $141 in wealth created for every dollar spent on the job.No one claims that all basic research posts such glorious rewards, but as MIT president Rafael Reif and former Intel CEO Craig Barrett noted this week in the Financial Times, "A report by the non-partisan Information Technology & Innovation Foundation estimates that over those nine years, such cuts would reduce GDP by $200bn - and that estimate compares sequestration to a scenario where R&D merely remains at the 2011 rate. If in those nine years the US instead kept R&D spending constant as a proportion of output, the economy would be $565bn bigger. And if it invested in R&D at the same rate as China, that gap would grow to $860bn."Thus the risk posed by the sequester: it magnifies strains in an already constrained scientific enterprise. And from that, it's not hard to weigh the concept of decline, an actual, lasting erosion of essential national capacity. We can certainly avoid such an unforced error; we can decide to invest more, and more reliably in the future. But we may not...and that choice has consequences that aren't too difficult to perceive.
Read the whole thing. Then talk about it. Tom might just drop in and conversate a bit.
